Part X : Cristallographie et transformations de phase

Plan
Les différents types de transformation solide-solide
Relations d’'orientation et précipitation —  symétries
Relations d’orientation et transformation martensitique
Les variants d’orientation, enumeration, reconstruction phase parente __|
Matrices de changement de bases (rappels d’algebre linéaire)
Espace réciprogue ~ metrique
Diffraction _
Objectifs

NogkrwbdE

De nombreuses transformations de phases solides, qu’elles soient diffusives comme
la précipitation ou displacives comme la transformation martensitique, mettent en jeu
une relation d'orientation (orientation relationship OR):

Le nombre de variants et la morphologie des précipités ou de la martensite sont dictés
par cette OR. Le but de la premiere partie du cours est d’expliquer le concept de
variant et comment les dénombrer a partir des symetries.

Nous ferons des rappels d’algébre (matrices, changement de repere), et introduirons
le réseau réciproque et le tenseur métrique. Ces notions sont utiles en diffraction.
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La cristallographie au cceur des transformations de phases
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J. Xiao, C. Cayron, R. Logé, Acta
0.01 Materialia, 255, 2023, 119069
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Rappel: Cristal = réseau + motif

» Réseau (de nceuds) = une base (3 vecteurs non colinéaires)
sur lagquelle est construit la cellule unitaire + toutes les
combinaisons linéaires entieres de ses 3 vecteurs.

« Motif = groupe d’atomes dans la cellule unitaire. Note: les
symetries du motif ne sont pas nécessairement ceux du
réseau. Par exemple, un réseau est nécessairement centro-
symétrique alors que le cristal ne I'est pas forcément (cas
de la figure).

* Le nombre de symétries d’un cristal est inférieur ou égal a
celui de son réseau.

» Groupe ponctuel = groupe des symétries d’orientation du
cristal. Il y a 10 groupes ponctuels en 2D et 32 en 3D.

M. Escher

» Note groupe d’espace = groupe ponctuel ® translations sous unitaire.

« Exemple: réeflexion glissée e e e e BE- -
P JISEE l'sel s’&& @ = o [GHe- - -

’ EIEIEI Un des 17

* |y a 17 groupes d’espace (wallpaper) en 2D et 230 en 3D. [EISEIE  groupes 2D
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1. Les differents types de transformations solide-solide

Diffusion 4 Vitesse de croissance®

Transf. lente. Phases stables. Transf. rapide (1100 m/s), phases métastable,
morphologies en lattes ou plaquettes intriquées

Martensite laths in Ti-6Al-V alloy ~ Martensite in high carbon steel

@200 umPe Y ‘
Recrystallization in FeMnSi steel

SN N ' : =
S ssi ins .
Cus;Au APBs ?:C'Cu_’;% ‘;mg/rt';%n «Twins» in NiTi shape memory alloy
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1. Les differents types de transformations solide-solide

Attention: la terminologie dépend de la communauté scientifigue !!

Pour les métallurgistes

Martensitic transformations are very different from those involving diffusion of atoms. In martensitic
transformations, the atoms move in an organised manner relative to their neighbours. This
homogeneous lattice distortion (often involving shearing) of the parent phase creates a new crystal
structure, without any compositional change (no diffusion). Martensitic transformations are also
known as “diffusionless”, “displacive” or “military”. Adapted from Prof. Bhadeshia, Cambridge

DISPLACIVE
. :> (1) Diplacive = non-diffusive
bl " (2) Reconstructive = diffusive
[ ¢ (@)
= C’est cette définition que nous
RECONSTRUCTIVE utiliserons par la suite
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1. Les differents types de transformations solide-solide

Pour les cristallographes et physiciens

(1) Displacive transitions proceed through a small distortion of the bonds (dilatational or rotational).
The atomic displacements are small (0.01-0.1A) and the specific heat is low (few J/g). The system is
either 100% parent or 100% daughter. They are of second order. Existence of a group-subgroup
relationship between the symmetries of the parent and daughter phases.

(2) Reconstructive transitions proceed by breaking of the primary or secondary bonds. They imply
large atomic displacements (> 0.1 A), the specific heat is important(~10-1000 J/g). Coexistence of
parent and daughter phases because of the high barrier of energy. They are first order. Absence
of any group-subgroup relationship between the symmetries of the parent and daughter phases.
The transitions can even increase the symmetry of the high temperature phase.

= Bain transitions (bcc-fcc) and Burgers transitions (bcc-hcp) can thus be described as “reconstructive”.

(3) Order-disorder transitions proceed through substitution between atoms possibly followed by small
atomic displacements on a latent lattice common to the parent and daughter phases. They are
commonly found in metals and alloys but also in some ceramics.

Adapted from Prof. P. Toledano, Univ. Amiens, France
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2. Relation d’orientation et précipitation

Les alliages Al-4%Cu (série '2xxx") aussi appelés Duralumin ont été découverts en1903 par le
métallurgiste allemand Alfred Wilm a Direner Metallwerke Aktien Gesellschaft. Apres
homogénéisation et trempe, ces alliages durcissent a température ambiante apres quelques
jours. Note: haute limite élastique pour des aluminium mais la présence du cuivre les rend plus

sensibles a la corrosion.

Séaquence de précipitation: GP— 6" — 0’ (semi-cohérent) — CuAl,-0 (incohérent).

Zone de Guinier-Preston

<—— Matrice Al

GP zones

<—— Couche de Cu sur plans {100},

§ <—— Matrice Al

4

@ (G011}
| I‘IDET i;:nm OR = (001)0/" (001)Al

(001) Coherent or [100]9'" [100]Al

semicoherent
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Pour info 2. Relation d’orientation et précipitation

Un alliage a précipitation « complexe »: Al-Mg-Si-Cu (séries ‘6xxx' + Cu).

Séquence de précipitation: QP— QC— Q' (semi-cohérent, métastable) — Q (incohérent, stable)

/O ® ©
© oo o \
@G‘Qoe

OOOO

O©O

« QP = phase désordonnée Al/Cu/Mg/Si, hexagonale a =3.9 - 4.0 A

« QC et Q autres phases avec mise en ordre des atomes Mg, Si et Cu sur le
réseau hexagonal QP

» Les trois phases peuvent coexister dans le méme précipité

=, * Laconnaissance de la phase stable Q phase (déterminée par diffraction des

rayons X) a permis de déduire la structure des phases nanométriques QP et QC.

T. Epicier et C. Cayron : Revue de Métallurgie 109, 393-407 (2012)

;
A
A/
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2. Relation d’orientation et martensite

Transformation martensitigue y (fcc) - o’ (bcc ou bct)  Displacif (au sens des métallurgistes)

« Ladistorsion du réseau engendre la création de dislocations et des champs de déformation dans la
martensite et dans 'austénite environnante.

« Ces defauts expliquent I’hystérésis thermique avec M, < T, (rappel T, température de G* = G%).

« Présence de relief de surface visible sur une surface polie d’un échantillon trempé.

« La martensite de surface se forme a une température plus haute: M, (volume) < M (surface) < T,.

- Effet des contraintes sur les variants de martensite formés au refroidissement et sur la texture finale.

0,5 um

“Surface martensite in a FeNi alloy quenched below
.0°C (3D confocal microscopy). Annick Baur's thésis.

Surface
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2. Relation d’orientation et martensite

Les ORs « classiqgues » de la métallurgie

fcc-bee : Kurdjumov-Sachs (aciers, laitons, HEAS)
[110]fcc = [111]bcc and (111)fcc I (110)bcc

bee-hep : Burgers (alliages Ti, Zr)
[111]bcc = [100]hcp and (llo)bcc I (001)hcp

fcc-hep : Sohji-Nishiyama (alliages Co)
[110}¢.. = [100]pp and (111)¢ // (001)p,

= Elles sont toutes basées sur le méme principe:

 Direction dense // Direction dense
 Plan dense /I Plan dense

cubic-body-centred lattice

{t11} jf {0001}
(o] /¢ 1120

ra
cubic-face-centrerd B Co :_* x Co hexagonal-close
lattice 3 Al Ag — y Al Ag packed lattice

W.G. Burgers, On the process of transition of the
cubic-body-centered modification into the
hexagonal-close-packed modification of zirconium,
Physica 1 (1934) 561-586.
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3. Modeles de transformation martensitique

Martensite dans les aciers. |l existe plusieurs relations d’orientation (OR) entre la phase parente fcc - vy
Fe et la phase fille martensite bcc - (ou bct) o’ Fe, en fonction de la chimie de I'alliage.

/ Atomes de Fe
Distorsion de Bain ﬁ_“"j:h f: .
T | T . T «— Sites possibles du
| ° L l /l carbone (octaedriques)
= e

Bain (1924) [100],// [100], , [011], // [010], et (0T1), // (001),

Los 3 ORS observés Pitsch [110], // [111], , [110], // [117], et (001), // (110),

dans les aciers et Nishiyama-Wassermann [110],// [001], ,[112], // [110], et (111),// (110),
alliages FeNi

Kurdjumov-Sachs [110] // [111], , [1T2], // [112], et (T111), // (110),

La distorsion de Bain sert de base a tous les modeéles de transformation, mais 'OR de Bain n’a jamais
éte observée dans les aciers ! Les ORs Pitsch, NW et KS ORs sont a 10° de Bain — L'explication sera
donnée dans le dernier cours.
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3. Orientation relationships martensite/austenite

Un modéle analogue a Bain a été proposé par Burgers pour les transformations

martensitiques bcc — hcp . Ce modéle repose sur une combinaison de distorsion de
réseau par cisaillement et de shuffle :

Combinaison de deux cisaillements
simples sur plans {112},..

/ 4 w04 fin], 312d Vall’f.wi [i] 34004
(= ] w /N e

a6k A
Ar

On dit que cet atome “shuffle”,
c’est-a-dire qu'’il ne se déplace pas
selon les mémes regles que les
nceuds du réseau

falmani,

fr

fi

Note: Il est souvent dit que la transformation martensitique modifie le réseau par
des combinaisons d’étirements (stretch, type Bain) et de cisaillements simples.

Selon moi, il est plus juste de 'imaginer comme une distorsion angulaire :
laissant des directions denses invariantes.

fe
i
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4. Les variants d’orientation

Carte EBSD d’un acier bainito-martensitique utilisé
dans les cuves de réacteurs nucléaires a eau
pressurisée (REP) francais. Chaque grain
austenitique fcc (phase haute température) est
transformé en 24 variants de martensite bcc pendant
la trempe. Ou sont les anciens grains austénitiques ?
La question est d’intérét car les anciens joints de
grains sont des sites de fragilité (impuretés,
ségrégation etc).

fcc y - bee o @ Kurdjumov-Sachs OR Tétraedre fcc fait
- - avec les faces {111
(110} // [1]oce €t (T10);eo // (T10)yce i

=

24 o’ variants

Cube bcc fait avec les
faces {100}

3D simulation with GenOVa

EPFL Crystallography and phase transformations Phase transformations X - 13



3. The orientation variants

Carte EBSD des 12 variants en lattes de phase o d'un
alliage Ti-6Al-V aussi appelé Ti64 Grade 5, ici refroidit
lentement (donc pas vraiment martensitique, mais en
a quand méme toutes les caractéristiques
cristallographiques). Ces alliages ont une faible
densité, haute limite élastique, grande plasticitée,
méme a basse température, et résistent tres bien a la
corrosion. Dans cette carte il n'y a qu'un seul ancien
grain parent bcc .

L ]

) A4 NN
I - 50 | 5C-+E 1-3; Step=0.3 um; Grid635x476

{100}, cube

bce B - hep o : Burgers OR
[100]¢p // [111]pe. @nd (001), // (110),..

:> 12 o’ variants

{1oo}hcp + {001}hcp
hexagones (12)

3D simulation with GenOVa
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4. Enumeérer les variants d’orientation

—_

A A. Cas 2D avec B phase parente carrée
A (matrice) et a phase fille (triangulaire) Dans les deux cas A et B,
< . > formée par précipitation (mouvements méme si le mécanisme de
non coordonnés des atomes). formation de la phase fille est

différent, il existe une OR entre

——
; la phase parente B et la phase
B. Cas 2D avec [} phase parente carrée aPp P b P ;
L ) : . fille a. Dans cet exemple, 'OR
(austénite) et a phase fille (triangulaire) A
) : . est la méme.

formée par transformation martensitique

(mouvements coordonnés des atomes).
me mg Le nombre de variants d’orientation
\\ ’ est le nombre de symétries de la

\ ,' phase parente divisé par le
m& nombre de symétries communes
- - entre la phase parente et un variant
,I \ de la phase fille pris arbitrairement :
| ’ \
B = (1, mb,mbmb,mf B B
G = AL Ly, my, ey, m R”/ Rom) G° ={1,mf,mg‘,mg‘,RS‘n/S,Ri‘zn/g} N& = |G | N& = § = 4
B 2
B B B H
H” = {I,mx} avec m;, || m§
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4. Enumeérer les variants d’orientation

On encode la relation d’orientation sous forme
d’ une matrice de changement de repere T =
[B — B%]. On utilise les matrices de symétries

données par les groupes ponctuels GP , G*:

I
Pour info b = (Ll mf),mly, mf, RE, RS

a _ a a a a
G —{I,m1;m2:m3;RZn/g;R—Zn/B}

| . I Les symétries commune entre la phase parente et le variant n°1 forme un sous groupe
de G* appelé groupe d’intersection et noté HP -
F=6" nTG T = (I,m}
Chaque variant est un co-ensemble _mb — B _{..B pB N _(ph B
a; = H I,m,.t,a, =im,.,, Rz, t,a3 =1I,m, t,a, = {RZ;, ,m.
de type a; = BH—HB { } { Xy /2} { 3’} /Xy

B
Le nombre de variants est donné par la N = M N& = § = 4
formule de Lagrange: |]Hlﬁ| 4 > 2

On peut appliquer la méme formule a la 5 |G|
NB =

AL : _ 6
transformation inverse |H | NB = 5= 3

Et comme |IHIﬁ| = [m*|,

nous obtenons une « belle formule » :

vele | = v |6 | 4%6=3x8
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Pour info 4. Reconstruction de la phase parente

La compréhension de la structure algebrique des variants et des relation de désorientation qui les
lient entre eux (structure de groupoide) a été mise a profit pour développer un algorithme de
reconstruction des grains parents a partir des cartes EBSD 100% martensitique (ARPGE)

Exemple avec les aciers

EBSD map of a martensitic/bainitic steel Parent austenitic grains reconstructed with ARPGE
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Pour info

4. Reconstruction de la phase parente

(@

Exemple avec la zircone

‘h;'\'_.‘i;D:
noclinic phase

Reconstructed cubic grains

10D pm

C. Cayron, Reconstruction of the Cubic and Tetragonal
Parent Grains from Electron Backscatter Diffraction
Maps of Monoclinic Zirconia, J. Am. Ceram. Soc., 93
2541-2544 (2010)

Measured Baddeleyite

C Measured Baddeleyite D
(all grains in A)

<001>

ﬂ Reconstructed cubic zirconia

IPFz 101

Reconstruction of parent
cubic zirconia from measured
daughter baddeleyite in (i)

X

E Theoretical parent-daughter F Reconstructed cubic zirconia
zirconia relationship in (i) (all grains in B)

<100>

<001>

368,258 points

N.E. Timms et al.

® cubic
® monoclinic

® cubic

* monoclinic 145 grains

Cubic zirconia in >2370°C impact melt records Earth's

hottest crust, Earth and Planetary Science Letters 477 (2017) 52-58
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5. Matrices de changement de bases

On considére une base B = (a, b, ¢). Un vecteur v est donné dans cette
base par ses coordonnées v,, vV, ,Vz;:V=Vv,a+Vv,b+v;cC

%1
V=7 = [vzl C

U3

Convention sur les matrices

Myy My My
M

=My, M, M23] - M | = indice de ligne S i \Z
= — Mjj T
M3, Mz, Mss ] = indice de colonne /:/’
b’
v=Mv=v,a+v,b+v;c’=v,Ma+v,Mb+v;Mc

My, My, Mz V1 My1q + v, My + v3 M3
= [M21 M5, Mzs] I ] = IV1M21 + v Mp + v3Ma3 | = M;; v; Notation tensorielle
M3, M32 M33 V1 Mzq + v M35 + v3M33 (avec convention d’Einstein)
*
Coordonnees de
Ma Mb Mc L'élément (i, j) d’'une matrice M d’'une application linéaire m
représente la i'" coordonnée de I'image par m du jt vecteur de base

Notation matricielle
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5. Matrices de changement de bases

Produit de deux matrices (exprimées dans la méme base, sens actif)

.f )!

a b e
A=|p g |, B=
u ovow
ace +bA+cp  af +bu + co tI-’:r‘—FbV—FCT)

their matrix products are:
) = (pa+qA+ rp pl+gqu+ro  py-+qu+rT

™o R
Qr W@
4w 2

=5 w2

a b c o 3
AB=|p g r Al
U ovow p o ue + vA 4+ wp ud +vp+ wo uwy+ vv +wT

Produit de deux vecteurs

by
b = [bzl vecteur colonne (espace direct) et at=(a; a az) vecteur ligne (espace réciproque)
b3

by
atb=(a1 a; az) lbzl =a,b, +ab, + azb; = a; b;
bs

2 [> « a'b =matrice 1 x 1 = produit scalaire
by arby  azby  asb, « b a' = matrice 3 x 3 = produit dyadique
ba'=(by| (@1 az a3) =|a;b; azb; azby[=Db; g
bs

aibs ab; azbs

~——
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5. Matrices de changement de bases

On considere deux bases B =(a, b, c) etB’=(a’, b’, ¢’) m
La matrice de changement de bases (matrice de passage) T de (a, b, c) B % b
vers (a’, b’, ¢’) notée [B—B'] est définie par les coordonnées des vecteurs b a v
de la base finale (a’, b’, ¢’) écrit en colonne dans la base initiale B : 3’
a,:a1a+a2b+a,3C all bll Cll

S =by axb b’z é’: bs¢ | T=[B»B]=[a,b,cly=|a, b> ¢,
C —C1a Cz C3C a13 b,3 C,3

Soit u écrit dans B, u,g= [uz] 5- L& méme vecteur u ecrit dans B’ est u g = lu’zl g tel que

—_— / L) ! L) / L) —_ ! ! ! —_ ! ! !
Ug=uidgtu, bgtuz g =u Tag+tu,Tbhg+tuzTcyg=T (uW;ag+u,bg+u;zcCy)

Uy

Et donc: [ul
Us

B~

u'y
=T uz /B
u3

Ou encore:

EPFL Crystallography and phase transformations
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5. Matrices de changement de bases

a'y
a’,
a's

b’y
b,
b'5

c'y
c',
c's

-

Les coordonnées d’un vecteur fixe (u,, u,, us) sont contravariantes.
T est une matrice passive matrice pour les coordonnées.

uq u’]_
—_ u — !/
k 3 us
/ Par contre les vecteurs liés a la base (a, b, ¢) sont covariants.
Tt est une matrice active pour eux.
!/
_ / / a d
a’> =a;a+a,b+asc bl= Tt b
b> =b';a+b,b+b'5cC . c
¢’ =cja+c,b+c'5c ¢

\_

Note:
det(T) _volume du parallelepipede (a’,b’,c’)

~volume du parallelepipéde (a, b, c)

b a’
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5. Matrices de changement de bases

T,=[B>B=[a’,b’,¢’]

T2: [B,—)B"] — [an, b", c"]/B’

/ On considere un vecteur fixe u. Comment changent ses coordonnees? \
U u' Suivi par u'y u"y Uq u"4
Uz | =[B—B'] |u' AP, [ =[BB [u > |uz2|=[B>B[B'>B" [u";
Us u's u's u's

\ La composition de matrices passives T se lit de gauche a droite | [B—>B"] = [B—>B'][B'>B"] /

/ On considére des vecteurs a, b, c liés a une base. En quels nouveaux vecteurs sont-ils changés? \
a, a a" al au a
[b’ =T, |b suivi par b" (=T, b’ - b"|=T,'T,' b
c, c C" CI C" /T\ C

K La composition des matrices actives Tt se lit de droite a gauche /
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5. Matrices de changement de bases

Les matrices passives sont écrites dans des bases locales.

A = opération écrite dans la base B A =[B—B']
B’ = opération écrite dans la base B B’ =[B'—>B"]

\_ © Cp=[B-B"=[B-B][B'>B"] =AB Y,

Les matrices actives sont écrites dans une base globale.

A = opération écrite dans la base B = C.. =B A
B = opération écrite dans la base B /B =B TB

Heureusement tout est cohérent car : B’ = [B—B] B, [B>B] = A"'BA

Note: En cristallographie, quand deux transformations de phases sont composées et que chacune est
déterminée séparément dans sa base locale, il est plus facile et direct d’utiliser la notation passive.
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On définit une base réciproque B = (a*, b", ¢*) a partir d’'une base directe B = (a, b, ¢) par

6. Espace réciproque

*

*

*

PSR Qb I o))

-a
b
. C

O o

*

*

O T o

*

b
b
b

O - O

O OO0

*

*

*

- a
b
. C

o o

soit

a
[b] (a* b* c¢*) = Identity
C

Si on connait les coordonnées des vecteurs a, b, ¢ dans une base orthonormée, alors
on peut calculer directement les coordonnées des vecteurs a“, b*, c” par:

. bAc _ cAa B aAb
A T det(abo) “det(abe) ¢ T det(abo)

*

Cette base réciproque rend tres simple le calcul produit scalaire:

Soit le vecteur u” écrit dans la base B* = (a*, b*, c*),
Et le vecteur v écrit dans la base B = (a, b, ¢),

U™ = Upx 8% + Uy b* + Ug. C*
v=v,a+Vv,b+v;c

Le produit scalaire vaut

&1
U™V = (U@ + Uy b+ Us €7) (Vv @+ V, D+ V5C) = Upe Vg Ugs Vp F Uge Vg = (U, Uy, U3,) [vz]
U3
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6. Espace réciproque et tenseur metrigue

Question: Si les coordonnées du vecteur u dans B sont connues, comment connaitre celles dans B* ?

Réponse: Utiliser la matrice de passage [B* — B] et le fait que u” = [B* — B] u

On appelle tenseur métrique cette matrice de passage, G = [B* — B].
Question: Comment calculer le tenseur metrique ?

Réponse: Le produit scalaire avec les deux vecteurs écrits dans le réseau direct est

c uv=uyv =(B*>BJu)v = u' [B*>B]'v= u'Gv

a 1
e uv=(uia+u,b+uyc)-(via+v,b+vyc)=(U u us)[b].(a b c)[vzl
U3

C

=|G=[B*>B]= =G!| et [UV=UV =U'GYV

a a’ ab ac
bfa b ¢ =|ab b? bc
C ac bc c?

Important: Le tenseur métrique se définit donc simplement a partir des
longueurs des vecteurs de base a, b, ¢ et des angles entre eux, comme
c’est le cas usuel en cristallographie. Il 'y a pas besoin de connaitre les
coordonnees des vecteurs dans une base orthonormeée pour calculer le a2={all[lal

tenseur métrique . a-b = [|a||[|b|lcos(a,b) etc...
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Pour info 6. Espace réciproque et tenseur métrique

Tous les calculs cristallographiques peuvent étre réalisés avec le tenseur métrique.

Si vraiment il fallait introduire une base orthonormée, on peut le faire de maniere « encadrée » en
utilisant le tenseur de structure qui est la matrice de passage d’'une base orthonormale B vers
la base cristallographique B définie selon les Tables Internationales de Cristallographie

ortho

b(cos(y)—cos(a) cos(B))

a sin(a) e 0
S = [Bor 0_>B] = bV
. 0 Sin() 0 |
la cos(B) b cos(a) c|
b

Avec VV le volume de la cellule unitaire divisé par le produit des normes des vecteurs a b c. Il vaut

V= % = /1 + 2 cos(a) cos(B) cos(y) — cos?(a) — cos2(B) — cos2(y)

Lien entre G et S: En écrivant que Vuetv, (Su)tSv =utG v, il vientimmédiatement G =S'S
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6. Espace réciproque et plans

« Un plan est défini a partir de ses indices de Miller (h k 1)

« Le vecteur pt=(hkl) estle vecteur normal au plan, et (h k I) sont ses
coordonnées dans le réseau réciproque.

« Ce méme vecteur écrit dans le réseau directestn =G ! p

» Tout point M de coordonnées OM =[x y z] dans le réseau direct est localisé
dansle planssi ptOM =hx+ky +1z=0

« Toute direction OM = [x y z] pointe vers la strate n du plan ssi hx + ky + wz = n

P,

M O ~ Le réseau cristallin peut étre découpé en strates parallelement a

n=1 unplan p d’indices de Miller (h k |) fixés. Le réseau est
ol O . 'ensemble des nceuds r =[xy z] telsque x,y,z € Z
/ — —
r O « danslastrate n=0de p sonttelsquehx+ky+wz=0
(h k) n=o danslastraten=1de p sonttelsquehx +ky+wz =1 etc.

o) O -

r vecteur écrit dans l'espace direct
p plan dont la normale est un vecteur écrit dans I'espace réciproque
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6. Espace réciproque et plans

« La méthode de Miller construit les points (A, B, C) de la strate n = 1 du plan
P qui sont les intersections de la strate avec les 3 axes de base (a, b, C) :

@)
x 0 0 1 1 1
A:[OI,B: yl,C=|0lavecx ==, y=—, z =~
h k !
0 0 Z B
On vérifie en effet que p* OA = pt OB = pt OC = 1 et ce V base (a, b, c).
% b

« Sion appelle H le point de projection orthogonale de I'origine O sur la strate
n =1 plan p, nous avons p'OH = ||p||||OH| = 1

— En écrivant ||OH|| = d;,; la distance interplanaire entre les strates du

plan p, on obtient directement ||p|| = di a
hkl

« Attention, pour calculer |[p]| il faut garder en téte que p est un vecteur du
réseau réciprogue donc sa norme est donnée par ||pl|? = pt G p
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6. Espace réciproque et plans

Exemple en 2D 1. Tracer le plan pt = (-1,2) par deux méthodes différentes:

a) Par la construction de Miller

On considere un réseau cristallin tel que b) E ruisant la b L . s | ¢
lal=1, [bl=2, a-b=1(a=60° ) En construisant la base réciproque puis le vecteur p

2. Que vaut la distance interplanaire d;;, des plans p ?

1.a Voir la figure a droite.
1.b

On construita“telquea™“b =0eta~a=1

On construitb* telque ba=0etb™b =1
Pour b™ b = 1 il faut que by, la projection de b” sur b soit
telle que ||bj ||lIbll = 1, sachant que ||b|| = 2

b;| = 1/2

= |

2. Calcul de d;,,.

1 _
dpx = ipy 2vec Ipll> =p*G~'p

Le tenseur métrique vaut G = H 11}

pone, lIpll* = -1.2)[ 47 () =4

1
jdhkzﬁ:]‘/z
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Pour info 6. Espace reciproque et plans

Notation a 4 indices pour réseaux hexagonaux b pt=(210)=(2130)

Pour les plans

pt=(h, k, 1) en 3 indices < pt = (h, k, —(h+k), I) en 4 indices

Demo:

Un point M (X,y,z) appartient a la strate n =1 de ce planssihx +ky +zl =1
Cette strate intercepte I'axe a en un point A (x = 1/h), 'axe b en un point B (y = 1/k), et 'axe ¢ en un point C (z = 1/I).
Elle intercepte I'axe (a+b) en un point D (r, r,0) tel que (h+k) r = 1.

= L’indice de Miller du plan selon I'axe —(a+b) est —(h+k).

_ 2x—y
Pour les directions u= 3
2 — xX=2u+v
. . y—X
u =[x,y,z] en 3 indices < [u,v,w,z] en 4 indices avec : V=g y=2v+u
w=—(u+v)

Demo: u=xa+yb+zc=ua+vb+w(-a-b)+zc

Démontrons que w = —(u + v), le reste est ensuite facile. Posons z = 0, et notonsu; =ua+vb +w (- a-b) etu,le vecteur u,
tourné de 120°, u, =ub +v (- a—b) + wa. Nous voulons que u; + u, = (u+w) a + (u+v) b + (v+w) (- a — b) ait les mémes indices
que u; Ou U, a des permutations et signe + prés. Le seul moyen est de poser: (u+w) = v, (U+v) = -w, v+w = U
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6. Espace reciproque et changement de base

On considére
« Une base B, de réciproque B; et de tenseur métrique G,.
« Une base B, de réciproque B, et de tenseur métrique G,.

T=[B,— B,]

Question: Si on connait une relation d’orientation T entre les deux bases directes, quelle est la
relation d’orientation T* entre les bases réciproques ?

Réponse: Prenons deux vecteurs, un dans I'espace direct u et I'autre dans I'espace réciproque
p, leur produit scalaire est indépendant du choix de la base, nous avons p,tu,=p,‘u,

Donc pj, U,=pj; Uy = (T*ps,)Tuy, =pj, TUT u, valable V u et p = T*T = Identité
= | T'=T
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7. Diffraction

Loi de BragQ: Le faisceau incident est diffusé sous forme d’ondes planes par
les atomes ou les groupes d’atomes formant le motif. Si le
faisceau arrive sous un angle 0 sur des plans cristallins dont la
distance interplanaires est d telle que 2d sin@ vaut une multiple
de la longueur d’onde A, les ondes émises vont interférer des
maniére constructive. On parle alors de diffraction. La direction
de diffraction fait elle aussi un angle 6 avec le plan de telle sorte
gue I'angle entre le faisceau incident et diffracté est 26.

2dyg; Sind =n A | Avecn eN et A la longueur d'onde des rayons X (< 0.1 nm)

S0keV
Electrons

‘ Focussing Mirrors
{or Momnoe hromator)

Prh}nry ¥-ray Beam

Rotating
Anode (Cu)

4-Circle Gonoimeter | Eulerian or Kappa Geometry)
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7. Diffraction

Loi de Laue:

(h k1)

Le déphasage entre les ondes planes incidentes et diffusées de vecteur d’'onde k, et k respectivement
est Ap = 2 Ak r avec AK normal au plan de diffraction, et r vecteur (de I'espace direct) qui appartient
au réseau cristallin. Les coordonnées de r dans I'espace direct sont des entiers. La condition de

diffraction s’écrit par le produit scalaire Akr € Z, V r € réseau . La condition de diffraction s’écrit donc:

AK=np

avec p un vecteur de coordonnées entieres dans le réseau réciproque, c’est donc un plan cristallin.
Nous venons de prouver que le plan de diffraction Ak est un plan cristallin!

La loi de Bragg s’obtient en utilisant le fait que |[k|| = [|kyl| = % — |[AK]|| = 25;119

Si on compare a ||Ak|| = n|Ip]| = di, il vient directement
hkl

2 dhkl sind =nAi

EPFL Crystallography and phase transformations Phase transformations X - 34



7. Diffraction

On peut couper le réseau cristallin autour d’une P
direction entiére r = [u v w] fixée (axe de zone en TEM).

[uv w]

2

« La diffraction dans la zone de Laue d’ordre (n = 0)

sont les plans pt = (h k ) tel que hu + vk + wl =0 2
* Les zones de Laue d’ordre supérieur sont les plans P P4
inclinés qui ne contiennent plus r, mais qui font le p\ %pz Ps
A _ 1
méme angle avec r, tel que hu + vk + wl = 1, etc. Espace réciprogue

Espace direct Diffraction en axe de zone

Note 1
Cependant en pratique des effets de

taille (streaking) et la convergence du
faisceau suffisent a relaxer ces
conditions. C’est ainsi qu’on peut
observer dans la zone de Laue d’ordre O
de nombreux spots de diffraction et pas

seulement le spot transmis. cwata epnere "0\

Théoriquement la diffraction n’est
possible pour des conditions
exactes de Bragg, donc avec des
angles tres spécifiques 6

' FOLZ
P+ ZOoLZ
0

Note 2: [ ] pour une direction spécifique, < > pour un ensemble de directions équivalentes par symétries
() pour un plan spécifique, { } pour un ensemble de plans équivalents par symétries
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7. Diffraction

La diffraction en TEM, et dans une moindre mesure en EBSD, est la principale technique pour
mesurer une relation d’orientation:

®e * @ . Cette SAED (Selected Electron Area Diffraction) simulée montre une OR
0 de Burgers:
e - o Joccq
(002)p¢p * Directions paralleles = Zone Axis = [111],.. // [100],,
@ ® . o @

* Plans paralléles = spots de diffraction alignés = (110), . // (002)p,,

SAED of a bcc B matrix and hep o martensite

Note : La notation a quatre indices [2110],,, = 2a —b — —(a + b) = 3a = [300], (voir slide 31)

hcp
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Une erreur malheureusement bien
trop fréquente en science des
matériaux: les effets de moiré.

De « nouvelles » phases exotiques

,.' " 5
o : :
24 - 2 5..5. :!‘ b w.'.. .":l';"'.l:il} 4 ......L~L I"..".'.‘ :!:'..'}\\ ¥ . 4 ...h Loy II\LI'.. .. ~77 l..%.% '
ot S5 ~ 5 4 Qs y e~ ~ ' -
sont régulierement rapportées dans e T P ’:"-"57*“5~ e __,577s§:;:_ AL Y ~'.~,.~:.:.
. . . s L oS AR R GCaRC N oL SR AT R 58 LR RN e b A e e L L ‘ e
SRS RN LA b oY RS W RO R & L USROG L O R RN i 4% oY) rh- ..‘.
des revues scientifiques parfois a ey v;""'." SR e L U e L Y e RS T T e S ::1';‘ﬂ:~”.!:..i;’~ "k
g . ~ ' 2 e e g ~ r ™ o
haut facteur d'impact, mais la ‘ -
p ) ' 1

plupart sont des « mirages »
explicables par des effets de moiré, :-73:;#.*
des interférences entre la diffraction =45
du précipité de structure classique '-::1'{
et la diffraction de la matrice avec [k
laquelle le précipité est en relation Jsixy s
d’orientation. e

SRR




Pour info 7. Diffraction

[ ETTER 250iNnATUREIVOL5101127UNE2014 . o
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Nanotwinned diamond with unprecedented a new phClS eM!
hardness and stability

Quan Huangl*, Dongli Yu'*, Bo Xu'*, Wentao Hu'*, Yanming Ma?, Yanbin Wang3, Zhisheng Zhao', Bin Wen', Julong He',
Zhongyuan Liu' & Yongjun Tian'

Figure 1 | Onion carbon nanoparticles and a bulk sample synthesized at (C) domains form a {111} twin boundary (TB). Several M-diamond (M)

10 GPa and 1,850 °C. a, HRTEM image of onion carbon nanoparticles. domains are associated with cubic diamond twins containing stacking faults

b, TEM image of the sample showing nanotwinned microstructure. Inset: (SFs). Fast Fourier transforms of M-diamond and cubic diamond, shown in the

photograph of the black opaque sample (~2 mm in diameter). ¢, HRTEM upper and lower insets, respectively, indicate that lattices of M-diamond and

image of the area marked with the red box in b. Two adjacent cubic diamond  cubic diamond are coherent. any reported carbon phase. The new phase (denoted M-diamond) had

a monoclinic structure with lattice parameters of a = 0.436 nm, b =
0.251 nm, ¢ = 1.248 nm and f = 90.9°. All the C—C bonds were sp’
hybridized, as indicated by the electron energy loss spectrum measure-
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Résumée (1/2)

« Laterminologie displacif/reconstructif d’'une transformation dépend de la communauté scientifique.

 Pour les metallurgistes, la définition est basée sur I'absence ou non de diffusion:

Displacif = martensitique = sans diffusion, mouvements collectif des atomes, distorsion du réseau
cristallin, changement de forme, et dislocations d’'accommodation aux interfaces.

Reconstructive = diffusif, pas de changement de forme ni de relief de surface.

« Pour les physiciens, la définition est basée sur les symétries:

Displacif = Iéger déplacement des atomes, pas de chaleur latente, les symétries de la phase fille sont
toutes « héritées » de la phase parente.

Reconstructif = grands déplacements des atomes, reconstruction des liaisons chimiques, chaleur
latente, certaines symétries de la phase parente sont perdues, d’autres apparaissent.

« De nombreuses transformations de phases, quelles soient diffusives ou displacives mettent en jeu une
relation d’orientation (OR).

« Acause des symétries de la phase parente et de la phase filles, différents variants de phase fille sont
formés. Leur nombre est donné par la formule de Lagrange.

» Pour les métallurgistes la transformation martensitique fcc-bcc dans les aciers est displacive. La
distorsion de Bain expligue comment les atomes de Fe se déplacent relativement les uns aux autres,
mais I'OR de Bain OR est a plus de 10° des ORs couramment observées...
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Résumé (2/2)

La matrice de passage T peut étre utilisée pour définir comment la base cristallographique d’'un des
variants de la phase fille est orienté relativement a sa phase parente.

Les matrices de passage T sont passives. Elles doivent étre composées de gauche a droite. Elles
sont utilisées pour déterminer les coordonnées de vecteurs fixes quand les bases sont modifiées.

Les transposées des matrices de passage Ttsont actives. Elles sont composées de droite a gauche
comme des fonctions. Elles changent les vecteurs dont les coordonnées sont calculées dans une base
fixe.

Les transformations de phase et les ORs sont souvent étudiées par des techniques de diffraction.

Les spots de diffraction correspondent a des vecteurs de coordonnées entiere du réseau réciproque.
Ces vecteurs sont normaux aux plans cristallins qui diffractent.

D’une maniere générale la normale a un plan cristallin d’'indices de Miller (h k ) est définie par un
vecteur normal au plan qui s’écrit pt = (h k |) dans le réseau réciproque. Attention ce vecteur n’a pas
nécessairement des coordonnées entiéres dans le réseau directn = G™1 p

Le tenseur métriqgue est la matrice de passage du réseau réciproque vers le réseau direct. Il est tres
important car il permet de calculer aisément les produits scalaires, et donc les normes des vecteurs
dans le réseau direct ou réciproque, ainsi que les angles entre directions ou entre plans.

Si une matrice de passage est T dans le réseau direct, elle devient T dans le réseau réciproque.
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