
Phase transformations X - 1Crystallography and phase transformations

Plan

1. Les différents types de transformation solide-solide

2. Relations d’orientation et précipitation

3. Relations d’orientation et transformation martensitique

4. Les variants d’orientation, énumération, reconstruction phase parente

5. Matrices de changement de bases (rappels d’algèbre linéaire)

6. Espace réciproque 

7. Diffraction

Part X : Cristallographie et transformations de phase

Objectifs

De nombreuses transformations de phases solides, qu’elles soient diffusives comme

la précipitation ou displacives comme la transformation martensitique, mettent en jeu

une relation d’orientation (orientation relationship OR):

Le nombre de variants et la morphologie des précipités ou de la martensite sont dictés

par cette OR. Le but de la première partie du cours est d’expliquer le concept de

variant et comment les dénombrer à partir des symétries.

Nous ferons des rappels d’algèbre (matrices, changement de repère), et introduirons

le réseau réciproque et le tenseur métrique. Ces notions sont utiles en diffraction.

symétries

métrique
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La cristallographie au cœur des transformations de phases

NiTi superélastique

maintenu en flexion

J. Xiao, C. Cayron, R. Logé, Acta 
Materialia, 255, 2023, 119069

La grande déformation réversible 

(pseudo-elasticité) est possible 

grâce à la transformation de phase 

sous contrainte: 

B2 (cubique) B19’ (monoclinique)

Seuls les variants de martensite 

B19’ qui accommodent la 

déformation imposée se forment 

 sélection de variants
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Rappel: Cristal = réseau + motif

M. Escher

• Réseau (de nœuds) = une base (3 vecteurs non colinéaires) 

sur laquelle est construit la cellule unitaire + toutes les 

combinaisons linéaires entières de ses 3 vecteurs.

• Motif = groupe d’atomes dans la cellule unitaire. Note: les 

symétries du motif ne sont pas nécessairement ceux du 

réseau. Par exemple, un réseau est nécessairement centro-

symétrique alors que le cristal ne l’est pas forcément (cas 

de la figure).

• Le nombre de symétries d’un cristal est inférieur ou égal à 

celui de son réseau.

• Groupe ponctuel = groupe des symétries d’orientation du 

cristal. Il y a 10 groupes ponctuels en 2D et 32 en 3D.

Cristal

• Note groupe d’espace = groupe ponctuel  translations sous unitaire. 

• Exemple: réflexion glissée

• Il y a 17 groupes d’espace (wallpaper) en 2D et 230 en 3D.
Un des 17 

groupes 2D

Nœud 
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Diffusion  Vitesse de croissance

Martensite laths in Ti-6Al-V alloy

Cu3Au APBs
Massive a grains
in Cu-38.7wt%Zn

CuAl2 ’ precipitates in Al alloy

1. Les différents types de transformations solide-solide

Transf. lente. Phases stables. 

Martensite in high carbon steel

«Twins» in NiTi shape memory alloyRecrystallization in FeMnSi steel

Eutectic in steel

Transf. rapide (1100 m/s), phases métastable, 
morphologies en lattes ou plaquettes intriquées
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Pour les métallurgistes

Martensitic transformations are very different from those involving diffusion of atoms. In martensitic

transformations, the atoms move in an organised manner relative to their neighbours. This 

homogeneous lattice distortion (often involving shearing) of the parent phase creates a new crystal

structure, without any compositional change (no diffusion). Martensitic transformations are also

known as “diffusionless”, “displacive” or “military”. Adapted from Prof. Bhadeshia, Cambridge

(1) Diplacive = non-diffusive

(2) Reconstructive = diffusive

Attention: la terminologie dépend de la communauté scientifique !! 

1. Les différents types de transformations solide-solide

C’est cette définition que nous 

utiliserons par la suite

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwit5dq3qaTKAhVBGw8KHet1Bt4QjRwIBw&url=http://cml.postech.ac.kr/2008/Steel_Microstructure/SM2.html&psig=AFQjCNEMZwkMoX0gt_nFS-02Cw2o8Rb8Cg&ust=1452689810492113
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(1) Displacive transitions proceed through a small distortion of the bonds (dilatational or rotational). 

The atomic displacements are small (0.01-0.1Å) and the specific heat is low (few J/g). The system is 

either 100% parent or 100% daughter. They are of second order. Existence of a group-subgroup 

relationship between the symmetries of the parent and daughter phases. 

(2) Reconstructive transitions proceed by breaking of the primary or secondary bonds. They imply 

large atomic displacements (> 0.1 Å), the specific heat is important(~10-1000 J/g). Coexistence of 

parent and daughter phases because of the high barrier of energy. They are first order. Absence 

of any group-subgroup relationship between the symmetries of the parent and daughter phases. 

The transitions can even increase the symmetry of the high temperature phase. 

(3) Order-disorder transitions proceed through substitution between atoms possibly followed by small 

atomic displacements on a latent lattice common to the parent and daughter phases. They are 

commonly found in metals and alloys but also in some ceramics. 

Pour les cristallographes et physiciens

Adapted from Prof. P. Toledano, Univ. Amiens, France

 Bain transitions (bcc-fcc) and Burgers transitions (bcc-hcp) can thus be described as “reconstructive”.

1. Les différents types de transformations solide-solide



Phase transformations X - 7Crystallography and phase transformations

Les alliages Al-4%Cu (série '2xxx') aussi appelés Duralumin ont été découverts en1903 par le 

métallurgiste allemand Alfred Wilm à Dürener Metallwerke Aktien Gesellschaft. Après 

homogénéisation et trempe, ces alliages durcissent à température ambiante après quelques 

jours. Note: haute limite élastique pour des aluminium mais la présence du cuivre les rend plus 

sensibles à la corrosion.

Zone de Guinier-Preston

2. Relation d’orientation et précipitation

Matrice Al

Couche de Cu sur plans {100}Al 

Phase θ′: OR = 
(001)𝜃′∥ (001)𝐴𝑙
[100]𝜃′∥ [100]𝐴𝑙

Séquence de précipitation: GP 𝜃" 𝜃′ (semi-cohérent)  CuAl2-𝜃 (incohérent). 

Matrice Al
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Un alliage à précipitation « complexe »: Al-Mg-Si-Cu (séries ‘6xxx' + Cu).

Séquence de précipitation: 𝑄𝑃 𝑄𝐶 𝑄′ (semi-cohérent, métastable)  𝑄 (incohérent, stable) 

• QP = phase désordonnée Al/Cu/Mg/Si, hexagonale a = 3.9 – 4.0 Å

• QC et Q autres phases avec mise en ordre des atomes Mg, Si et Cu sur le 

réseau hexagonal QP 

• Les trois phases peuvent coexister dans le même précipité

• La connaissance de la phase stable Q phase (déterminée par diffraction des 

rayons X) a permis de déduire la structure des phases nanométriques QP et QC.

Pour info 2. Relation d’orientation et précipitation
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Transformation martensitique  (fcc)  ’ (bcc ou bct)  Displacif (au sens des métallurgistes)

• La distorsion du réseau engendre la création de dislocations et des champs de déformation dans la 

martensite et dans l’austénite environnante.

• Ces défauts expliquent l’hystérésis thermique avec Ms < T0 (rappel T0 température de G = G).

• Présence de relief de surface visible sur une surface polie d’un échantillon trempé.

• La martensite de surface se forme à une température plus haute:  Ms(volume) < Ms (surface) < T0. 

• Effet des contraintes sur les variants de martensite formés au refroidissement et sur la texture finale.

2. Relation d’orientation et martensite

Surface martensite in a FeNi alloy quenched below
0°C (3D confocal microscopy). Annick Baur’s thesis.

 matrix
’

0,5 𝜇𝑚
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fcc-bcc : Kurdjumov-Sachs (aciers, laitons, HEAs)

[110]fcc = [111]bcc and (ത111)fcc // (ത110)bcc

bcc-hcp : Burgers (alliages Ti, Zr)

[111]bcc =  [100]hcp and (ത110)bcc // (001)hcp

fcc-hcp : Sohji-Nishiyama (alliages Co)

[110]fcc =  [100]hcp and (ത111)fcc // (001)hcp

 Elles sont toutes basées sur le même principe:

• Direction dense //   Direction dense 

• Plan dense //   Plan dense
W.G. Burgers, On the process of transition of the 

cubic-body-centered modification into the 
hexagonal-close-packed modification of zirconium, 

Physica 1 (1934) 561-586.

Les ORs « classiques » de la métallurgie

2. Relation d’orientation et martensite
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Martensite dans les aciers. Il existe plusieurs relations d’orientation (OR) entre la phase parente fcc - 

Fe et la phase fille martensite bcc - (ou bct) ’ Fe, en fonction de la chimie de l’alliage.

Sites possibles du 

carbone (octaédriques)

Atomes de Fe

Bain (1924) [100] // [100] , [011] // [010] et (0ത11) // (001)

Pitsch [110] // [111] , [ത110] // [11ത1] et (001) // (ത110)

Nishiyama-Wassermann [110] // [001] , [1ത12] // [110] et (ത111) // (ത110)

Kurdjumov-Sachs [110] // [111] , [1ത12] // [11ത2] et (ത111) // (ത110)

Distorsion de Bain

La distorsion de Bain sert de base à tous les modèles de transformation, mais l’OR de Bain n’a jamais 

été observée dans les aciers ! Les ORs Pitsch, NW et KS ORs sont à 10° de Bain  L’explication sera 

donnée dans le dernier cours.

Les 3 ORs observés 

dans les aciers et 

alliages FeNi

3. Modèles de transformation martensitique
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Un modèle analogue à Bain a été proposé par Burgers pour les transformations 

martensitiques bcc  hcp . Ce modèle repose sur une combinaison de distorsion de 

réseau par cisaillement et de shuffle :

On dit que cet atome “shuffle”, 

c’est-à-dire qu’il ne se déplace pas 

selon les mêmes règles que les 

nœuds du réseau 

3. Orientation relationships martensite/austenite

Note: Il est souvent dit que la transformation martensitique modifie le réseau par 

des combinaisons d’étirements (stretch, type Bain) et de cisaillements simples. 

Selon moi, il est plus juste de l’imaginer comme une distorsion angulaire 

laissant des directions denses invariantes.

Combinaison de deux cisaillements 

simples sur plans {112}bcc.
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fcc  - bcc ’ : Kurdjumov-Sachs OR

[110]fcc // [111]bcc et (ത111)fcc // (ത110)bcc

4. Les variants d’orientation

24 ’ variants

3D simulation with GenOVa

Tétraèdre fcc fait 

avec les faces {111}

Cube bcc fait avec les 

faces {100}

Carte EBSD d’un acier bainito-martensitique utilisé 

dans les cuves de réacteurs nucléaires à eau 

pressurisée (REP) français.  Chaque grain 

austénitique fcc (phase haute température) est 

transformé en 24 variants de martensite bcc pendant 

la trempe. Où sont les anciens grains austénitiques ? 

La question est d’intérêt car les anciens joints de 

grains sont des sites de fragilité (impuretés, 

ségrégation etc). 



’
’’

’
’

’
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bcc  - hcp ’ : Burgers OR

[100]hcp // [111]bcc and (001)hcp // (ത110)bcc

12 ’ variants

Carte EBSD des 12 variants en lattes de phase  d’un 

alliage Ti-6Al-V aussi appelé Ti64 Grade 5, ici refroidit 

lentement (donc pas vraiment martensitique, mais en 

a quand même toutes les caractéristiques 

cristallographiques).  Ces alliages ont une faible 

densité, haute limite élastique, grande plasticité, 

même à basse température, et résistent très bien à la 

corrosion. Dans cette carte il n’y a qu’un seul ancien 

grain parent bcc .

{100}bcc cube

{100}hcp + {001}hcp

hexagones (12)

3. The orientation variants

’’

’

’



3D simulation with GenOVa
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Le nombre de variants d’orientation 

est le nombre de symétries de la 

phase parente divisé par le 

nombre de symétries communes 

entre la phase parente et un variant 

de la phase fille pris arbitrairement :

4. Enumérer les variants d’orientation

 1

2

3

4

𝑁𝛼 =
8

2
= 4

A. Cas 2D avec  phase parente carrée 

(matrice) et  phase fille (triangulaire) 

formée par précipitation (mouvements 

non coordonnés des atomes).


B. Cas 2D avec  phase parente carrée 

(austénite) et  phase fille (triangulaire) 

formée par transformation martensitique

(mouvements coordonnés des atomes).

Dans les deux cas A et B, 

même si le mécanisme de 

formation de la phase fille est 

différent, il existe une OR entre 

la phase parente  et la phase 

fille . Dans cet exemple, l’OR 

est la même.

shuffle

1

𝑁𝛼 =
𝔾
𝛽

ℍ
𝛽

𝑚𝑥
𝛽

𝑚𝑦
𝛽

𝑚𝑥𝑦
𝛽

𝑚𝑥 ത𝑦
𝛽

𝔾
𝛽
= {𝐼, ҧ𝐼, 𝑚𝑥

𝛽
, 𝑚𝑦

𝛽
, 𝑚𝑥𝑦

𝛽
,𝑚𝑥 ത𝑦

𝛽
, 𝑅

ൗ𝜋 2

𝛽
, 𝑅

ൗ−𝜋
2

𝛽
} 𝔾𝛼 = {𝐼,𝑚1

𝛼 , 𝑚2
𝛼 , 𝑚3

𝛼 , 𝑅
ൗ2𝜋
3

𝛼 , 𝑅
ൗ−2𝜋
3

𝛼 }

𝑚1
𝛼

𝑚2
𝛼𝑚3

𝛼

ℍ
𝛽
= 𝐼,𝑚𝑥

𝛽
𝑎𝑣𝑒𝑐 𝑚𝑥

𝛽
∥ 𝑚1

𝛼

A

B
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Le nombre de variants est donné par la 

formule de Lagrange:
𝑁𝛼 =

𝔾
𝛽

ℍ
𝛽  1

2

3

4

𝑁𝛼 =
8

2
= 4

On peut appliquer la même formule à la 

transformation inverse: 𝑁𝛽 =
𝔾𝛼

ℍ𝛼

Et comme ℍ
𝛽

= ℍ𝛼 , 

nous obtenons une « belle formule » :

𝑁𝛽 =
6

2
= 3


12

3
𝑁𝛼 𝔾𝛼 = 𝑁𝛽 𝔾

𝛽

4 × 6 = 3 × 8

4. Enumérer les variants d’orientation

On encode la relation d’orientation sous forme 

d’une matrice de changement de repère  T =

[B

 B𝛼]. On utilise les matrices de symétries 

données par les groupes ponctuels 𝔾
𝛽

, 𝔾𝛼 :

Les symétries commune entre la phase parente et le variant n°1 forme un sous groupe 

de 𝔾
𝛽

appelé groupe d’intersection et noté ℍ
𝛽

:
ℍ
𝛽
= 𝔾

𝛽
∩ 𝐓 𝔾𝛼 𝐓−1 = {𝐼,𝑚𝑥

𝛽
}

𝔾
𝛽
= {𝐼, ҧ𝐼, 𝑚𝑥

𝛽
, 𝑚𝑦

𝛽
, 𝑚𝑥𝑦

𝛽
, 𝑚𝑥 ത𝑦

𝛽
, 𝑅

ൗ𝜋 2

𝛽
, 𝑅

ൗ−𝜋
2

𝛽
}

𝔾𝛼 = {𝐼,𝑚1
𝛼 , 𝑚2

𝛼 , 𝑚3
𝛼 , 𝑅

ൗ2𝜋
3

𝛼 , 𝑅
ൗ−2𝜋
3

𝛼 }

 1

2

3

4

Chaque variant est un co-ensemble

de type 𝛼𝑖 = 𝑔𝑖
𝛽
ℍ𝛽

𝛼1 = ℍ
𝛽
= 𝐼,𝑚𝑥

𝛽
, 𝛼2 = 𝑚𝑥𝑦

𝛽
, 𝑅

ൗ𝜋 2

𝛽
, 𝛼3 = ҧ𝐼,𝑚𝑦

𝛽
, 𝛼4 = {𝑅

ൗ−𝜋
2

𝛽
, 𝑚𝑥 ത𝑦

𝛽
}

Pour info
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La compréhension de la structure algébrique des variants et des relation de désorientation qui les

lient entre eux (structure de groupoïde) a été mise à profit pour développer un algorithme de

reconstruction des grains parents à partir des cartes EBSD 100% martensitique (ARPGE)

4. Reconstruction de la phase parente

EBSD map of a martensitic/bainitic steel Parent austenitic grains reconstructed with ARPGE

Exemple avec les aciers

Pour info
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C. Cayron, Reconstruction of the Cubic and Tetragonal 
Parent Grains from Electron Backscatter Diffraction 
Maps of Monoclinic Zirconia, J. Am. Ceram. Soc., 93 

2541–2544 (2010)

Exemple avec la zircone

N.E. Timms et al. Cubic zirconia in >2370◦C impact melt records Earth’s 
hottest crust, Earth and Planetary Science Letters 477 (2017) 52–58 

EBSD on monoclinic phase

Reconstructed cubic grains

4. Reconstruction de la phase parentePour info
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On considère une base B = (a, b, c). Un vecteur v est donné dans cette 

base par ses coordonnées v1, v2 , v3 : v = v1 a + v2 b + v3 c

𝐯 = 𝑣𝑖 =

𝑣1
𝑣2
𝑣3

M = 

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

= 𝑀𝑖𝑗

v’ = M v = v1 a’ + v2 b’ + v3 c’ = v1 M a + v2 M b + v3 M c

=  

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

𝑣1
𝑣2
𝑣3

= 

𝑣1𝑀11 + 𝑣2𝑀12 + 𝑣3𝑀13

𝑣1𝑀21 + 𝑣2𝑀22 + 𝑣3𝑀23

𝑣1𝑀31 + 𝑣2𝑀32 + 𝑣3𝑀33

= 𝑀𝑖𝑗 𝑣𝑗

Convention sur les matrices

Notation tensorielle

(avec convention d’Einstein)

Notation matricielle

i = indice de ligne

j = indice de colonne

5. Matrices de changement de bases

M a M b M c

Coordonnées de

L’élément (i, j) d’une matrice M d’une application linéaire m 

représente la ith coordonnée de l’image par m du jth vecteur de base

a

v

bc

a’ b’ 

c’

a b

c

v
v’
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Produit de deux matrices (exprimées dans la même base, sens actif)

• at b = matrice 1 × 1 = produit scalaire

• b at  = matrice 3 × 3 = produit dyadique

Produit de deux vecteurs

𝐛 =

𝑏1
𝑏2
𝑏3

vecteur colonne (espace direct)   et   at = 𝑎1 𝑎2 𝑎3 vecteur ligne (espace réciproque)

at b = 𝑎1 𝑎2 𝑎3

𝑏1
𝑏2
𝑏3

= a1b1 + a2b2 + a3b3 = ai bi

b at = 

𝑏1
𝑏2
𝑏3

𝑎1 𝑎2 𝑎3 = 

𝑎1𝑏1 𝑎2𝑏1 𝑎3𝑏1
𝑎1𝑏2 𝑎2𝑏2 𝑎3𝑏2
𝑎1𝑏3 𝑎2𝑏3 𝑎3𝑏3

= bi aj

5. Matrices de changement de bases
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On considère deux bases B = (a, b, c) et B’= (a’, b’, c’)

La matrice de changement de bases (matrice de passage) T de (a, b, c) 

vers (a’, b’, c’) notée BB′ est définie par les coordonnées des vecteurs 

de la base finale (a’, b’, c’) écrit en colonne dans la base initiale B :

a’ = 𝑎′1 a + 𝑎′2 b + 𝑎′3 c

b’ = 𝑏′1 a + 𝑏′2 b + 𝑏′3 c

c’ = 𝑐′1 a + 𝑐′2 b + 𝑐′3 c

Soit u écrit dans B, u/B= 

𝑢1
𝑢2
𝑢3

/B. Le même vecteur u écrit dans B’ est u/B′ = 

𝑢′1
𝑢′2
𝑢′3

/B‘ tel que

u/B = 𝑢′1 a’/B + 𝑢′2 b’/B + 𝑢′3 c’/B = 𝑢′1T a/B + 𝑢′2 T b/B + 𝑢′3 T c/B = T  (𝑢′1 a/B + 𝑢′2 b/B + 𝑢′3 c/B) 

Et donc:

T = BB′ = [a’, b’, c’]/B =

𝑎′1 𝑏′1 𝑐′1
𝑎′2 𝑏′2 𝑐′2
𝑎′3 𝑏′3 𝑐′3

ab

B
u

T

u/B = BB′ u/B′

𝑢1
𝑢2
𝑢3

/B = 𝐓

𝑢′1
𝑢′2
𝑢′3

/B‘

5. Matrices de changement de bases

Ou encore:
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T = BB′ = [a’, b’, c’]/B =

𝑎′1 𝑏′1 𝑐′1
𝑎′2 𝑏′2 𝑐′2
𝑎′3 𝑏′3 𝑐′3

𝑢1
𝑢2
𝑢3

/B = 𝐓

𝑢′1
𝑢′2
𝑢′3

/B′u/B = BB′ u/B′

Note: 

det(T) =
volume du parallelepipède (a’,b’,c’)
volume du parallelepipède (a, b, c)

a’ 
b’ 

c’ 

Les coordonnées d’un vecteur fixe (u1, u2 , u3) sont contravariantes. 

T est une matrice passive matrice pour les coordonnées.

𝐚′
𝐛′
𝐜′

= Tt

𝐚
𝐛
𝐜

Par contre les vecteurs liés à la base (a, b, c) sont covariants. 

Tt est une matrice active pour eux.

a’ = 𝑎′1 a + 𝑎′2 b + 𝑎′3 c

b’ = 𝑏′1 a + 𝑏′2 b + 𝑏′3 c

c’ = 𝑐′1 a + 𝑐′2 b + 𝑐′3 c

5. Matrices de changement de bases
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T1 = BB′ = [a’, b’, c’]/B

T2 = B′B" = [a", b", c" ]/B′

𝑢1
𝑢2
𝑢3

= BB′

𝑢′1
𝑢′2
𝑢′3

𝑢′1
𝑢′2
𝑢′3

= B′B"

𝑢"1
𝑢"2
𝑢"3

suivi par 

𝑢1
𝑢2
𝑢3

= BB′ B′B"

𝑢"1
𝑢"2
𝑢"3

T1 T2

La composition de matrices passives T se lit de gauche à droite

On considère un vecteur fixe u. Comment changent ses coordonnées?

𝐚′
𝐛′
𝐜′

= T1
t

𝐚
𝐛
𝐜

𝐚"
𝐛"
𝐜"

= T2
t

𝐚′
𝐛′
𝐜′

𝐚"
𝐛"
𝐜"

= T2
t T1

t

𝐚
𝐛
𝐜

suivi par

La composition des matrices actives Tt se lit de droite à gauche
(T1 T2)

t

On considère des vecteurs 𝐚, 𝐛, 𝐜 liés à une base. En quels nouveaux vecteurs sont-ils changés?

BB" = BB′ B′B"

5. Matrices de changement de bases


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Les matrices actives sont écrites dans une base globale.

A = opération écrite dans la base B
B = opération écrite dans la base B

C/B = B/B A/B

Les matrices passives sont écrites dans des bases locales.

A = opération écrite dans la base B A = BB′

B’ = opération écrite dans la base B’ B’ = B′B"

C/B = B/B A/B = A/B B’/B’

Note: En cristallographie, quand deux transformations de phases sont composées et que chacune est 

déterminée séparément dans sa base locale, il est plus facile et direct d’utiliser la notation passive.

B’/B’ = B′B B/B BB′ = 𝐀−1𝐁𝐀

C/B = BB" = BB′ B′B" = A/B B’/B’

Heureusement tout est cohérent car :

5. Matrices de changement de bases
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On définit une base réciproque B* = (a*, b*, c*) à partir d’une base directe B = (a, b, c) par

a* a = 1 b* a = 0 c* a = 0

a* b = 0   b* b = 1  c* b = 0  soit

a* c = 0  b* c = 0  c* c = 1

𝐚
𝐛
𝐜

𝐚∗ 𝐛∗ 𝐜∗ = 𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲

𝐚∗ =
𝐛ٿ𝐜

𝑑𝑒𝑡(𝐚 𝐛 𝐜)
𝐛∗ =

𝐜ٿ𝐚

𝑑𝑒𝑡(𝐚 𝐛 𝐜)
𝐜∗ =

𝐚ٿ𝐛

𝑑𝑒𝑡(𝐚 𝐛 𝐜)

Si on connait les coordonnées des vecteurs a, b, c dans une base orthonormée, alors 

on peut calculer directement les coordonnées des vecteurs a*, b*, c* par:

6. Espace réciproque

Cette base réciproque rend très simple le calcul produit scalaire:

Soit le vecteur u* écrit dans la base B* = (a*, b*, c*), u* = u1* a* + u2* b* + u3* c* 

Et le vecteur v écrit dans la base B = (a, b, c), v = v1 a + v2 b + v3 c

Le produit scalaire vaut 

u*v = (u1* a* + u2* b* + u3* c*) (v1 a + v2 b + v3 c) = u1* v1 + u2* v2 + u3* v3 = u1∗ u2∗ u3∗

𝑣1
𝑣2
𝑣3
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Question: Si les coordonnées du vecteur u dans B sont connues, comment connaitre celles dans B* ?

Réponse: Utiliser la matrice de passage [B*  B] et le fait que u* = [B*  B] u 

On appelle tenseur métrique cette matrice de passage,  G = [B*  B] . 

Question: Comment calculer le tenseur métrique ?

Réponse: Le produit scalaire avec les deux vecteurs écrits dans le réseau direct est

• uv = u* v = ([B*  B] u)t v  = ut [B*  B]t v = ut  Gt v

• uv = (u1 a + u2 b + u3 c)  (v1 a + v2 b + v3 c) = 𝑢1 𝑢2 𝑢3

𝐚
𝐛
𝐜

. 𝐚 𝐛 𝐜

𝑣1
𝑣2
𝑣3

 G = [B*  B] = 

𝐚
𝐛
𝐜

𝐚 𝐛 𝐜 = 
𝐚2 𝐚𝐛 𝐚𝐜
𝐚𝐛 𝐛2 𝐛𝐜
𝐚𝐜 𝐛𝐜 𝐜2

= Gt

6. Espace réciproque et tenseur métrique

uv = u* v = ut  G vet

Important: Le tenseur métrique se définit donc simplement à partir des 

longueurs des vecteurs de base 𝐚 , 𝐛 , 𝐜 et des angles entre eux, comme 

c’est le cas usuel en cristallographie. Il n’y a pas besoin de connaitre les 

coordonnées des vecteurs dans une base orthonormée pour calculer le 

tenseur métrique .
𝐚2= 𝐚 𝐚
𝐚𝐛 = 𝐚 𝐛 cos 𝐚, 𝐛 etc…

http://202.141.40.218/wiki/images/Jk1_7.png
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Tous les calculs cristallographiques peuvent être réalisés avec le tenseur métrique. 

Si vraiment il fallait introduire une base orthonormée, on peut le faire de manière « encadrée » en 

utilisant le tenseur de structure qui est la matrice de passage d’une base orthonormale B𝑜𝑟𝑡ℎ𝑜 vers 

la base cristallographique B définie selon les Tables Internationales de Cristallographie 

S = B𝑜𝑟𝑡ℎ𝑜B =

a sin(α)
b(cos γ −cos α cos β )

sin(β)
0

0
b 𝑉

sin(β)
0

a cos(β) b cos(α) c

Avec 𝑉 le  volume de la cellule unitaire divisé par le produit des normes des vecteurs a b c. Il vaut 

𝑉 =
𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
𝑎 𝑏 𝑐

= 1 + 2 cos α cos β cos γ − cos2 α − cos2 β − cos2(γ)

Lien entre G et S: En écrivant que ∀ 𝐮 et 𝐯, (Su)t Sv = ut G v , il vient immédiatement G = St S

Pour info 6. Espace réciproque et tenseur métrique

http://202.141.40.218/wiki/images/Jk1_7.png
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• Un plan est défini à partir de ses indices de Miller (h k l) 

• Le vecteur 𝐩t = (h k l) est le vecteur normal au plan, et (h k l) sont ses

coordonnées dans le réseau réciproque.

• Ce même vecteur écrit dans le réseau direct est 𝐧 = 𝐆−1 𝐩

• Tout point M de coordonnées OM = [x y z] dans le réseau direct est localisé 

dans le plan ssi 𝐩t 𝐎𝐌 = hx + ky + lz = 0 

• Toute direction OM = [x y z] pointe vers la strate n du plan ssi hx + ky + wz = n

6. Espace réciproque et plans

O M

p

r vecteur écrit dans l’espace direct
p plan dont la normale est un vecteur écrit dans l’espace réciproque

(h k l)

r

n = 1 
Le réseau cristallin peut être découpé en strates parallèlement à 

un plan p d’indices de Miller (h k l) fixés. Le réseau est 

l’ensemble des nœuds r = [x y z] tels que 𝑥, 𝑦, 𝑧 ∈ ℤ
• dans la strate n = 0 de p sont tels que h x + k y + w z = 0

• dans la strate n = 1 de p sont tels que h x + k y + w z = 1 etc.

M

p

O
n = 0 
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ab

H

O

𝑑ℎ𝑘𝑙

𝐩 = (h k l) 

• La méthode de Miller construit les points (A, B, C) de la strate n = 1 du plan 

p qui sont les intersections de la strate avec les 3 axes de base (a, b, c) : 

A = 

𝑥
0
0

, B = 
0
𝑦
0

, C = 
0
0
𝑧

avec 𝑥 =
1

ℎ
, 𝑦 =

1

𝑘
, 𝑧 =

1

𝑙

On vérifie en effet que 𝐩t 𝐎𝐀 = 𝐩t 𝐎𝐁 = 𝐩t 𝐎𝐂 = 1 et ce ∀ base (a, b, c).

• Si on appelle H le point de projection orthogonale de l’origine O sur la strate 

n = 1 plan p, nous avons  𝐩t 𝐎𝐇 = 𝐩 𝐎𝐇 = 1

 En écrivant 𝐎𝐇 = 𝑑ℎ𝑘𝑙 la distance interplanaire entre les strates du 

plan p, on obtient directement 𝐩 =
1

𝑑ℎ𝑘𝑙

• Attention, pour calculer 𝐩 il faut garder en tête que 𝐩 est un vecteur du 

réseau réciproque donc sa norme est donnée par  𝐩 𝟐 = 𝐩t 𝐆−1𝐩

6. Espace réciproque et plans

C

B

A

H

p = (132) 

a

O b

c
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Exemple en 2D

On considère un réseau cristallin tel que

𝐚 = 1, 𝐛 = 2, 𝐚 ∙ 𝐛 = 1 ( = 60°)

1. Tracer le plan pt = (-1,2) par deux méthodes différentes:

a) Par la construction de Miller

b) En construisant la base réciproque puis le vecteur p

2. Que vaut la distance interplanaire 𝑑ℎ𝑘 des plans p ? 

1.a Voir la figure à droite.

1.b

On construit a* tel que a*∙ b = 0 et a*∙ a = 1

On construit b* tel que b*∙ a = 0 et b*∙ b = 1

Pour b*∙ b = 1 il faut que 𝐛𝑝
∗ la projection de b* sur 𝐛 soit 

telle que 𝐛𝑝
∗ 𝐛 = 1, sachant que 𝐛 = 2

 𝐛𝑝
∗ = 1/2

2. Calcul de 𝑑ℎ𝑘

𝑑ℎ𝑘 =
1

𝐩
avec 𝐩 2 = 𝐩t 𝐆−1𝐩

Le tenseur métrique vaut 𝐆 =
1 1
1 4

Donc, 𝐩 2 = −1, 2
4/3 −1/3
−1/3 1/3

−1
2

= 4

 𝑑ℎ𝑘 =
1

4
= 1/2

6. Espace réciproque et plans

a

b

A

O

H

a*

b*



B

𝐛𝑝
∗
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Pour info

Notation à 4 indices pour réseaux hexagonaux

Pour les plans

Demo: 

Un point M (x,y,z) appartient à la strate n = 1 de ce plan ssi hx + ky + zl = 1

Cette strate intercepte l’axe a en un point A (x = 1/h), l’axe b en un point B (y = 1/k), et l’axe c en un point C (z = 1/l).

Elle intercepte l’axe (a+b) en un point D (r, r,0) tel que (h+k) r = 1. 

 L’indice de Miller du plan selon l’axe –(a+b) est –(h+k). 

pt = (h, k, l) en 3 indices  pt = (h, k, (h+k), l) en 4 indices 

Pour les directions

u = [x,y,z] en 3 indices   [u,v,w,z] en 4 indices avec : 

𝑥 = 2𝑢 + 𝑣

𝑦 = 2𝑣 + 𝑢

6. Espace réciproque et plans

pt = (2 1 0) = (2 1 ത3 0)

a

b

c⊙

A

B

D

Demo: u = x a + y b + z c = u a + v b + w (a  b) + z c

Démontrons que 𝑤 = −(𝑢 + 𝑣), le reste est ensuite facile. Posons z = 0, et notons u1 = u a + v b + w ( a  b) et u2 le vecteur u1

tourné de 120°, u2 = u b + v ( a  b) + w a. Nous voulons que u1 + u2 = (u+w) a + (u+v) b + (v+w) ( a  b) ait les mêmes indices 

que u1 ou u2 à des permutations et signe  près. Le seul moyen est de poser: (u+w) = v, (u+v) = -w, v+w = u

𝑢 =
2𝑥 − 𝑦

3

𝑣 =
2𝑦 − 𝑥

3
𝑤 = −(𝑢 + 𝑣)
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On considère

• Une base B1 de réciproque B1
* et de tenseur métrique G1. 

• Une base B2 de réciproque B2
* et de tenseur métrique G2. 

Question: Si on connait une relation d’orientation T entre les deux bases directes, quelle est la 

relation d’orientation T* entre les bases réciproques ? 

Réponse: Prenons deux vecteurs, un dans l’espace direct u et l’autre dans l’espace réciproque 

p, leur produit scalaire est indépendant du choix de la base, nous avons  p/2
t u/2 = p/1

t u/1

De plus,    𝐮/1 = [B1 B2] 𝐮/2 et 𝐩/1 = [B1
∗B2

∗] 𝐩/2

Donc 𝐩/2
t u/2 = 𝐩/1

t u/1 = (T∗ 𝐩/2)t T 𝐮/2 =𝐩/2
t T∗t T 𝐮/2 valable ∀ 𝐮 et 𝐩 T∗t T = Identité

 T* = T-t

B1

B2

a1

b1

c1

a2

b2c2

T = [B1 B2]

6. Espace réciproque et changement de base
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Loi de Bragg: Le faisceau incident est diffusé sous forme d’ondes planes par

les atomes ou les groupes d’atomes formant le motif. Si le

faisceau arrive sous un angle θ sur des plans cristallins dont la

distance interplanaires est d telle que 2d sinθ vaut une multiple

de la longueur d’onde λ, les ondes émises vont interférer des

manière constructive. On parle alors de diffraction. La direction

de diffraction fait elle aussi un angle θ avec le plan de telle sorte

que l’angle entre le faisceau incident et diffracté est 2θ.

Avec 𝑛  ℕ et  la longueur d’onde des rayons X (< 0.1 nm)2 𝑑ℎ𝑘𝑙 𝑠𝑖𝑛𝜃 = 𝑛 𝜆

7. Diffraction
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Loi de Laue:

r

𝒌0 𝒌
p

(h k l)
2

𝒌0 𝒌

𝒌

−𝒌0

k

n = 0

n = 1

7. Diffraction

Le déphasage entre les ondes planes incidentes et diffusées de vecteur d’onde 𝐤0 et 𝐤 respectivement 

est ∆𝜑 = 2𝜋 𝐤 𝐫 avec 𝐤 normal au plan de diffraction, et r vecteur (de l’espace direct) qui appartient 

au réseau cristallin. Les coordonnées de r dans l’espace direct sont des entiers. La condition de 

diffraction s’écrit par le produit scalaire k 𝐫 ∈ ℤ, ∀ 𝐫 ∈ réseau . La condition de diffraction s’écrit donc:

∆𝐤 = 𝑛 𝐩

avec 𝐩 un vecteur de coordonnées entières dans le réseau réciproque, c’est donc un plan cristallin. 

Nous venons de prouver que le plan de diffraction k est un plan cristallin! 

La loi de Bragg s’obtient en utilisant le fait que k = k0 =
1

𝜆
→ k =

2 𝑠𝑖𝑛𝜃

𝜆

Si on compare à k = n 𝐩 =
𝑛

𝑑ℎ𝑘𝑙
, il vient directement  

2 𝑑ℎ𝑘𝑙 𝑠𝑖𝑛𝜃 = 𝑛 𝜆
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On peut couper le réseau cristallin autour d’une 

direction entière r = [u v w] fixée (axe de zone en TEM).  

• La diffraction dans la zone de Laue d’ordre (n = 0) 

sont les plans 𝐩t = (h k l) tel que hu + vk + wl = 0

• Les zones de Laue d’ordre supérieur sont les plans 

inclinés qui ne contiennent plus r, mais qui font le 

même angle avec r, tel que hu + vk + wl = 1, etc.
p1

p2
p3

p4

p4 p3

p2

p1

p1
p2 p3

p4

Espace direct
Espace réciproque

r 
= 

[u
 v

 w
]

pThéoriquement la diffraction n’est 

possible pour des conditions 

exactes de Bragg, donc avec des 

angles très spécifiques 

Cependant en pratique des effets de 

taille (streaking) et la convergence du 

faisceau suffisent à relaxer ces 

conditions. C’est ainsi qu’on peut 

observer dans la zone de Laue d’ordre 0 

de nombreux spots de diffraction et pas 

seulement le spot transmis. 

Note 1

7. Diffraction

Note 2: [ ] pour une direction spécifique, < > pour un ensemble de directions équivalentes par symétries

( ) pour un plan spécifique, { } pour un ensemble de plans équivalents par symétries

Diffraction en axe de zone

r 
= 

[u
 v

 w
]
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La diffraction en TEM, et dans une moindre mesure en EBSD, est la principale technique pour 

mesurer une relation d’orientation:

Cette SAED (Selected Electron Area Diffraction) simulée montre une OR 
de Burgers:

• Directions parallèles = Zone Axis = [111]bcc // [100]hcp

• Plans parallèles = spots de diffraction alignés = (ത110)bcc // (002)hcp

SAED of a bcc  matrix and hcp ’ martensite

(ത110)bcc

(002)hcp

Note : La notation à quatre indices 2ത1ത10 hcp = 2𝐚 − 𝐛 − − 𝐚 + 𝐛 = 𝟑𝐚 = 300 hcp (voir slide 31)

7. Diffraction
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Une erreur malheureusement bien 

trop fréquente en science des 

matériaux: les effets de moiré.

De « nouvelles » phases exotiques 

sont régulièrement rapportées dans 

des revues scientifiques parfois à 

haut facteur d’impact, mais la 

plupart sont des « mirages » 

explicables par des effets de moiré, 

des interférences entre la diffraction 

du précipité de structure classique 

et la diffraction de la matrice avec 

laquelle le précipité est en relation 

d’orientation.

7. DiffractionPour info
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2 5 0 | N AT U R E | VO L 5 1 0 | 1 2 J U N E 2 0 1 4

This a moiré, not 
a new phase M !

7. DiffractionPour info
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Résumé (1/2)

• La terminologie displacif/reconstructif d’une transformation dépend de la communauté scientifique. 

• Pour les metallurgistes, la définition est basée sur l’absence ou non de diffusion: 

Displacif = martensitique = sans diffusion, mouvements collectif des atomes, distorsion du réseau 

cristallin, changement de forme, et dislocations d’accommodation aux interfaces. 

Reconstructive = diffusif, pas de changement de forme ni de relief de surface.

• Pour les physiciens, la définition est basée sur les symétries: 

Displacif = léger déplacement des atomes, pas de chaleur latente, les symétries de la phase fille sont 

toutes « héritées » de la phase parente. 

Reconstructif = grands déplacements des atomes, reconstruction des liaisons chimiques, chaleur 

latente, certaines symétries de la phase parente sont perdues, d’autres apparaissent. 

• De nombreuses transformations de phases, quelles soient diffusives ou displacives mettent en jeu une 

relation d’orientation (OR).

• A cause des symétries de la phase parente et de la phase filles, différents variants de phase fille sont 

formés. Leur nombre est donné par la formule de Lagrange.

• Pour les métallurgistes la transformation martensitique fcc-bcc dans les aciers est displacive. La 

distorsion de Bain explique comment les atomes de Fe se déplacent relativement les uns aux autres, 

mais l’OR de Bain OR est à plus de 10° des ORs couramment observées...
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• La matrice de passage T peut être utilisée pour définir comment la base cristallographique d’un des 

variants de la phase fille est orienté relativement à sa phase parente.  

• Les matrices de passage T sont passives. Elles doivent être composées de gauche à droite. Elles 

sont utilisées pour déterminer les coordonnées de vecteurs fixes quand les bases sont modifiées.

• Les transposées des matrices de passage Tt sont actives. Elles sont composées de droite à gauche 

comme des fonctions. Elles changent les vecteurs dont les coordonnées sont calculées dans une base 

fixe.

• Les transformations de phase et les ORs sont souvent étudiées par des techniques de diffraction.

• Les spots de diffraction correspondent à des vecteurs de coordonnées entière du réseau réciproque. 

Ces vecteurs sont normaux aux plans cristallins qui diffractent.

• D’une manière générale la normale à un plan cristallin d’indices de Miller (h k l) est définie par un 

vecteur normal au plan qui s’écrit pt = (h k l) dans le réseau réciproque. Attention ce vecteur n’a pas 

nécessairement des coordonnées entières dans le réseau direct 𝐧 = 𝐆−1 𝐩

• Le tenseur métrique est la matrice de passage du réseau réciproque vers le réseau direct. Il est très 

important car il permet de calculer aisément les produits scalaires, et donc les normes des vecteurs 

dans le réseau direct ou réciproque, ainsi que les angles entre directions ou entre plans.

• Si une matrice de passage est T dans le réseau direct, elle devient T-t dans le réseau réciproque.

Résumé (2/2)




